Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.738
1.
Cell Genom ; 4(5): 100550, 2024 May 08.
Article En | MEDLINE | ID: mdl-38697125

To identify novel susceptibility genes for hepatocellular carcinoma (HCC), we performed a rare-variant association study in Chinese populations consisting of 2,750 cases and 4,153 controls. We identified four HCC-associated genes, including NRDE2, RANBP17, RTEL1, and STEAP3. Using NRDE2 (index rs199890497 [p.N377I], p = 1.19 × 10-9) as an exemplary candidate, we demonstrated that it promotes homologous recombination (HR) repair and suppresses HCC. Mechanistically, NRDE2 binds to the subunits of casein kinase 2 (CK2) and facilitates the assembly and activity of the CK2 holoenzyme. This NRDE2-mediated enhancement of CK2 activity increases the phosphorylation of MDC1 and then facilitates the HR repair. These functions are eliminated almost completely by the NRDE2-p.N377I variant, which sensitizes the HCC cells to poly(ADP-ribose) polymerase (PARP) inhibitors, especially when combined with chemotherapy. Collectively, our findings highlight the relevance of the rare variants to genetic susceptibility to HCC, which would be helpful for the precise treatment of this malignancy.


Carcinoma, Hepatocellular , Liver Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Recombinational DNA Repair , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Recombinational DNA Repair/drug effects , Casein Kinase II/genetics , Casein Kinase II/metabolism , Male , Mice , Animals , Female , Cell Line, Tumor , Middle Aged , Genetic Predisposition to Disease
2.
Int J Biol Sci ; 20(7): 2454-2475, 2024.
Article En | MEDLINE | ID: mdl-38725854

The emergence of Poly (ADP-ribose) polymerase inhibitors (PARPi) has marked the beginning of a precise targeted therapy era for ovarian cancer. However, an increasing number of patients are experiencing primary or acquired resistance to PARPi, severely limiting its clinical application. Deciphering the underlying mechanisms of PARPi resistance and discovering new therapeutic targets is an urgent and critical issue to address. In this study, we observed a close correlation between glycolysis, tumor angiogenesis, and PARPi resistance in ovarian cancer. Furthermore, we discovered that the natural compound Paris saponin VII (PS VII) partially reversed PARPi resistance in ovarian cancer and demonstrated synergistic therapeutic effects when combined with PARPi. Additionally, we found that PS VII potentially hindered glycolysis and angiogenesis in PARPi-resistant ovarian cancer cells by binding and stabilizing the expression of RORα, thus further inhibiting ECM1 and interfering with the VEGFR2/FAK/AKT/GSK3ß signaling pathway. Our research provides new targeted treatment for clinical ovarian cancer therapy and brings new hope to patients with PARPi-resistant ovarian cancer, effectively expanding the application of PARPi in clinical treatment.


Diosgenin/analogs & derivatives , Glycolysis , Neovascularization, Pathologic , Ovarian Neoplasms , Saponins , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2 , Female , Humans , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Saponins/pharmacology , Saponins/therapeutic use , Signal Transduction/drug effects , Glycolysis/drug effects , Cell Line, Tumor , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Drug Resistance, Neoplasm/drug effects , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Animals , Mice, Nude , Mice , Angiogenesis
4.
Int J Mol Sci ; 25(9)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38731844

More than 20% of metastatic prostate cancer carries genomic defects involving DNA damage repair pathways, mainly in homologous recombination repair-related genes. The recent approval of olaparib has paved the way to precision medicine for the treatment of metastatic prostate cancer with PARP inhibitors in this subset of patients, especially in the case of BRCA1 or BRCA2 pathogenic/likely pathogenic variants. In face of this new therapeutic opportunity, many issues remain unsolved. This narrative review aims to describe the relationship between homologous recombination repair deficiency and prostate cancer, the techniques used to determine homologous recombination repair status in prostate cancer, the crosstalk between homologous recombination repair and the androgen receptor pathway, the current evidence on PARP inhibitors activity in metastatic prostate cancer also in homologous recombination repair-proficient tumors, as well as emerging mechanisms of resistance to PARP inhibitors. The possibility of combination therapies including a PARP inhibitor is an attractive option, and more robust data are awaited from ongoing phase II and phase III trials outlined in this manuscript.


Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms , Recombinational DNA Repair , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , BRCA2 Protein/genetics , BRCA2 Protein/deficiency , Neoplasm Metastasis , BRCA1 Protein/genetics , BRCA1 Protein/deficiency , Phthalazines/therapeutic use , Phthalazines/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Piperazines
5.
Genes Chromosomes Cancer ; 63(5): e23243, 2024 May.
Article En | MEDLINE | ID: mdl-38747337

Breast cancer susceptibility 1/2 (BRCA1/2) genes play a crucial role in DNA damage repair, yet mutations in these genes increase the susceptibility to tumorigenesis. Exploiting the synthetic lethality mechanism between BRCA1/2 mutations and poly(ADP-ribose) polymerase (PARP) inhibition has led to the development and clinical approval of PARP inhibitor (PARPi), representing a milestone in targeted therapy for BRCA1/2 mutant tumors. This approach has paved the way for leveraging synthetic lethality in tumor treatment strategies. Despite the initial success of PARPis, resistance to these agents diminishes their efficacy in BRCA1/2-mutant tumors. Investigations into PARPi resistance have identified replication fork stability and homologous recombination repair as key factors sensitive to PARPis. Additionally, studies suggest that replication gaps may also confer sensitivity to PARPis. Moreover, emerging evidence indicates a correlation between PARPi resistance and cisplatin resistance, suggesting a potential overlap in the mechanisms underlying resistance to both agents. Given these findings, it is imperative to explore the interplay between replication gaps and PARPi resistance, particularly in the context of platinum resistance. Understanding the impact of replication gaps on PARPi resistance may offer insights into novel therapeutic strategies to overcome resistance mechanisms and enhance the efficacy of targeted therapies in BRCA1/2-mutant tumors.


BRCA1 Protein , BRCA2 Protein , Drug Resistance, Neoplasm , Mutation , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Female , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Neoplasms/genetics , Neoplasms/drug therapy
6.
Trials ; 25(1): 301, 2024 May 04.
Article En | MEDLINE | ID: mdl-38702828

BACKGROUND: Maintenance therapy with niraparib, a poly(ADP-ribose) polymerase inhibitor, has been shown to extend progression-free survival in patients with newly diagnosed advanced ovarian cancer who responded to first-line platinum-based chemotherapy, regardless of biomarker status. However, there are limited data on niraparib's efficacy and safety in the neoadjuvant setting. The objective of Cohort C of the OPAL trial (OPAL-C) is to evaluate the efficacy, safety, and tolerability of neoadjuvant niraparib treatment compared with neoadjuvant platinum-taxane doublet chemotherapy in patients with newly diagnosed stage III/IV ovarian cancer with confirmed homologous recombination-deficient tumors. METHODS: OPAL is an ongoing global, multicenter, randomized, open-label, phase 2 trial. In OPAL-C, patients will be randomized 1:1 to receive three 21-day cycles of either neoadjuvant niraparib or platinum-taxane doublet neoadjuvant chemotherapy per standard of care. Patients with a complete or partial response per Response Evaluation Criteria in Solid Tumors version 1.1 (RECIST v1.1) will then undergo interval debulking surgery; patients with stable disease may proceed to interval debulking surgery or alternative therapy at the investigator's discretion. Patients with disease progression will exit the study treatment and proceed to alternative therapy at the investigator's discretion. After interval debulking surgery, all patients will receive up to three 21-day cycles of platinum-taxane doublet chemotherapy followed by niraparib maintenance therapy for up to 36 months. Adult patients with newly diagnosed stage III/IV ovarian cancer eligible to receive neoadjuvant platinum-taxane doublet chemotherapy followed by interval debulking surgery may be enrolled. Patients must have tumors that are homologous recombination-deficient. The primary endpoint is the pre-interval debulking surgery unconfirmed overall response rate, defined as the investigator-assessed percentage of patients with unconfirmed complete or partial response on study treatment before interval debulking surgery per RECIST v1.1. DISCUSSION: OPAL-C explores the use of niraparib in the neoadjuvant setting as an alternative to neoadjuvant platinum-taxane doublet chemotherapy to improve postsurgical residual disease outcomes for patients with ovarian cancer with homologous recombination-deficient tumors. Positive findings from this approach could significantly impact preoperative ovarian cancer therapy, particularly for patients who are ineligible for primary debulking surgery. TRIAL REGISTRATION: ClinicalTrials.gov NCT03574779. Registered on February 28, 2022.


Antineoplastic Combined Chemotherapy Protocols , Indazoles , Neoadjuvant Therapy , Neoplasm Staging , Ovarian Neoplasms , Piperidines , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Neoadjuvant Therapy/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Piperidines/adverse effects , Piperidines/administration & dosage , Piperidines/therapeutic use , Indazoles/adverse effects , Indazoles/therapeutic use , Indazoles/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Poly(ADP-ribose) Polymerase Inhibitors/administration & dosage , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , Progression-Free Survival , Clinical Trials, Phase II as Topic , Homologous Recombination , Bridged-Ring Compounds/administration & dosage , Bridged-Ring Compounds/therapeutic use , Bridged-Ring Compounds/adverse effects , Piperazines/adverse effects , Piperazines/administration & dosage , Piperazines/therapeutic use , Time Factors
7.
Int J Cancer ; 155(2): 203-210, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38619111

Metastatic melanoma is still a difficult-to-treat cancer type owing to its frequent resistance mechanisms to targeted and immunotherapy. Therefore, we aimed to unravel novel therapeutic strategies for melanoma patients. Preclinical and clinical studies show that melanoma patients may benefit from a treatment with poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi). In this study, we focus on PARP1 as a potential biomarker to predict the response of melanoma cells to PARPi therapy. We found that melanoma cells with high basal PARP1 expression exhibit significantly increased cell death after PARPi treatment owing to higher PARP1 trapping compared with melanoma cells with low PARP1 expression. In addition, we could demonstrate that PARP1 expression levels are low in nonmalignant skin cells, and metastatic melanomas show considerably higher PARP1 levels compared with primary melanomas. Most strikingly, we found that high PARP1 levels correlate with worse overall survival of late stage metastasized melanoma patients. In conclusion, we show that PARP1 might act as a biomarker to predict the response to PARPi therapy, and that in particular the late stage metastasized melanoma patients are especially sensitive to PARPi therapy owing to elevated PARP1 expression. Our data suggest that the PARPi cytotoxicity primarily will affect the high PARP1 expressing melanoma cells, rather than the low PARP1 expressing nonmalignant skin cells resulting in only low side effects.


Melanoma , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerase Inhibitors , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/mortality , Melanoma/genetics , Melanoma/pathology , Melanoma/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly (ADP-Ribose) Polymerase-1/metabolism , Cell Line, Tumor , Skin Neoplasms/drug therapy , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Poly(ADP-ribose) Polymerases/metabolism , Female , Male , Neoplasm Metastasis , Middle Aged , Aged , Drug Resistance, Neoplasm , Prognosis
8.
Cancer Lett ; 589: 216820, 2024 May 01.
Article En | MEDLINE | ID: mdl-38574883

One in three Triple Negative Breast Cancer (TNBC) is Homologous Recombination Deficient (HRD) and susceptible to respond to PARP inhibitor (PARPi), however, resistance resulting from functional HR restoration is frequent. Thus, pharmacologic approaches that induce HRD are of interest. We investigated the effectiveness of CDK-inhibition to induce HRD and increase PARPi sensitivity of TNBC cell lines and PDX models. Two CDK-inhibitors (CDKi), the broad range dinaciclib and the CDK12-specific SR-4835, strongly reduced the expression of key HR genes and impaired HR functionality, as illustrated by BRCA1 and RAD51 nuclear foci obliteration. Consequently, both CDKis showed synergism with olaparib, as well as with cisplatin and gemcitabine, in a range of TNBC cell lines and particularly in olaparib-resistant models. In vivo assays on PDX validated the efficacy of dinaciclib which increased the sensitivity to olaparib of 5/6 models, including two olaparib-resistant and one BRCA1-WT model. However, no olaparib response improvement was observed in vivo with SR-4835. These data support that the implementation of CDK-inhibitors could be effective to sensitize TNBC to olaparib as well as possibly to cisplatin or gemcitabine.


Antineoplastic Agents , Piperazines , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Cisplatin/pharmacology , Cisplatin/therapeutic use , Gemcitabine , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Phthalazines/pharmacology , Phthalazines/therapeutic use , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cell Line, Tumor
9.
J Immunother Cancer ; 12(4)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580335

BACKGROUND: Ovarian cancer is the most lethal gynecological malignancy, with limited treatment options after failure of standard therapies. Despite the potential of poly(ADP-ribose) polymerase inhibitors in treating DNA damage response (DDR)-deficient ovarian cancer, the development of resistance and immunosuppression limit their efficacy, necessitating alternative therapeutic strategies. Inhibitors of poly(ADP-ribose) glycohydrolase (PARG) represent a novel class of inhibitors that are currently being assessed in preclinical and clinical studies for cancer treatment. METHODS: By using a PARG small-molecule inhibitor, COH34, and a cell-penetrating antibody targeting the PARG's catalytic domain, we investigated the effects of PARG inhibition on signal transducer and activator of transcription 3 (STAT3) in OVCAR8, PEO1, and Brca1-null ID8 ovarian cancer cell lines, as well as in immune cells. We examined PARG inhibition-induced effects on STAT3 phosphorylation, nuclear localization, target gene expression, and antitumor immune responses in vitro, in patient-derived tumor organoids, and in an immunocompetent Brca1-null ID8 ovarian mouse tumor model that mirrors DDR-deficient human high-grade serous ovarian cancer. We also tested the effects of overexpressing a constitutively activated STAT3 mutant on COH34-induced tumor cell growth inhibition. RESULTS: Our findings show that PARG inhibition downregulates STAT3 activity through dephosphorylation in ovarian cancer cells. Importantly, overexpression of a constitutively activated STAT3 mutant in tumor cells attenuates PARG inhibitor-induced growth inhibition. Additionally, PARG inhibition reduces STAT3 phosphorylation in immune cells, leading to the activation of antitumor immune responses, shown in immune cells cocultured with ovarian cancer patient tumor-derived organoids and in immune-competent mice-bearing mouse ovarian tumors. CONCLUSIONS: We have identified a novel antitumor mechanism underlying PARG inhibition beyond its primary antitumor effects through blocking DDR in ovarian cancer. Furthermore, targeting PARG activates antitumor immune responses, thereby potentially increasing response rates to immunotherapy in patients with ovarian cancer.


Glycoside Hydrolases , Ovarian Neoplasms , STAT3 Transcription Factor , Animals , Female , Humans , Mice , Cell Line , Immunity , Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Glycoside Hydrolases/antagonists & inhibitors , Glycoside Hydrolases/metabolism
10.
Bioconjug Chem ; 35(4): 551-558, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38591781

Poly(ADP-ribose) polymerase inhibitors (PARPi) have been approved for once or twice daily oral use in the treatment of cancers with BRCA defects. However, for some patients, oral administration of PARPi may be impractical or intolerable, and a long-acting injectable formulation is desirable. We recently developed a long-acting PEGylated PARPi prodrug, PEG∼talazoparib (TLZ), which suppressed the growth of PARPi-sensitive tumors in mice for very long periods. However, the release rate of TLZ from the conjugate was too fast to be optimal in humans. We prepared several new PEG∼TLZ prodrugs having longer half-lives of drug release and accurately measured their pharmacokinetics in the rat. Using the rates of release of TLZ from these prodrugs and the known pharmacokinetics of free TLZ in humans, we simulated the pharmacokinetics of the macromolecular prodrugs and released TLZ in humans. From several possibilities, we chose two conjugates that could be administered intravenously every 2 weeks and maintain TLZ within its known therapeutic window. We describe situations where the PEG∼TLZ conjugates would find utility in humans and suggest how the intravenously administered long-acting prodrugs could in fact be more effective than daily oral administration of free TLZ.


Antineoplastic Agents , Neoplasms , Prodrugs , Humans , Mice , Rats , Animals , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prodrugs/pharmacology , Neoplasms/drug therapy
11.
Cancer Med ; 13(7): e7149, 2024 Apr.
Article En | MEDLINE | ID: mdl-38572951

BACKGROUND: Poly (ADP-ribose) polymerase (PARP) inhibitors have been increasingly used in the treatment of ovarian cancer, with BRCA positivity and homologous recombination deficiency (HRD) being common biomarkers used for predicting their efficacy. However, given the limitations of these biomarkers, new ones need to be explored. METHODS: This retrospective study included 181 ovarian cancer patients who received olaparib or niraparib at two independent hospitals in Japan between May 2018 and December 2022. Clinical information and blood sampling data were collected. Patient characteristics, treatment history, and predictability of treatment duration based on blood data before treatment initiation were examined. RESULTS: High-grade serous carcinoma, BRCA positivity, HRD, and maintenance therapy after recurrence treatment were observed more frequently in the olaparib group than in the niraparib group. The most common reasons for treatment interruption were anemia, fatigue, and nausea in the olaparib group and thrombocytopenia in the niraparib group. Regarding response to olaparib treatment, complete response to the most recent treatment, maintenance therapy after the first chemotherapy, high-grade serous carcinoma, and germline BRCA positivity were observed significantly more frequently among responders than among non-responders. Furthermore, neutrophil counts were significantly higher among responders than among non-responders. CONCLUSIONS: Inflammation-related blood data, such as neutrophil count, obtained at the initial pre-treatment visit might serve as potential predictors for prolonged olaparib treatment. While this study offers valuable insights into potential indicators for prolonged olaparib treatment, it underscores the need for more expansive research to strengthen our understanding of PARP inhibitors and optimize treatment strategies in ovarian cancer.


Antineoplastic Agents , Carcinoma , Ovarian Neoplasms , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Japan , Ribose/therapeutic use , Retrospective Studies , Mutation , Antineoplastic Agents/adverse effects , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Biomarkers , Poly(ADP-ribose) Polymerases , Carcinoma/drug therapy , Phthalazines/adverse effects
12.
Curr Opin Oncol ; 36(3): 174-179, 2024 May 01.
Article En | MEDLINE | ID: mdl-38573207

PURPOSE OF REVIEW: This review is designed to highlight recent research efforts to optimize treatment strategies in men with advanced prostate cancer. RECENT FINDINGS: Recent research analyses have suggested an overall survival advantage to treating some men with newly identified metastatic prostate cancer with a "triplet" of androgen deprivation therapy, docetaxel, and an androgen receptor axis-targeted agent (ARAT), but further work remains to refine which men need this aggressive of a treatment approach. Randomized trials have led to the approval of poly(ADP-ribose) polymerase inhibitor/ARAT agent combinations for some men with metastatic castration resistant prostate cancer, but the applicability of this approach to the growing number of men receiving combinations of systemic therapy in the castration-sensitive setting is unclear. Trials to refine use of prostate-specific membrane antigen (PSMA)-directed radiopharmaceuticals are ongoing, while novel treatment approaches targeting mechanisms driving advanced prostate cancer continue to be explored. SUMMARY: Ongoing research focuses on refining the best combination and sequence of treatments for men with advanced prostate cancer. Future questions remain about use of existing therapies, and novel treatment approaches need to be developed.


Prostatic Neoplasms , Male , Humans , Prostatic Neoplasms/drug therapy , Androgen Antagonists/therapeutic use , Docetaxel , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Radiopharmaceuticals
13.
J Ovarian Res ; 17(1): 70, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561819

OBJECTIVES: This retrospective study aims to evaluating the subsequent management and outcomes after first-line PARPi progression in Chinese ovarian cancer population. METHODS: Clinical and pathologic variables, treatment modalities, and outcomes were assessed. We investigated the subsequent management and outcomes after first-line PARPi progression. The objective response rate (ORR) and disease control rate (DCR) parameters were evaluated to determine the response to subsequent chemotherapy. For the survival analyses, progression-free survival 1 (PFS1), PFS2, overall survival (OS) and PFS2 - PFS1 were analysed. RESULTS: A total of 124 patients received PARPi maintenance treatment after first-line chemotherapy during the study period in our center. 44 of them (35.5%) experienced a recurrence. The median duration of PARPi in these patients was 11.1 months (range: 1.2-75.1 months). A total of 40 patients (40/44, 90.9%) received subsequent chemotherapy with 35 (35/44, 79.5%) and 5 (5/44, 11.4%) patients received platinum-based and non-platinum-based chemotherapy in our center. 2 patients (4.5%) received target therapy and other 2 patients (4.5%) received best supportive care. 27.3% (12/44) patients received secondary cytoreduction surgery (SCS). After subsequent chemotherapy, 14 patients received PARPi retreatment as maintenance therapy. In patients who received platinum-based regimens (n = 35), 23 of 35 patients (65.7%) had complete/partial response (CR/PR), 8 of 35 (22.9%) had stable disease (SD), and 4 of 35 (12.1%) had progressive disease (PD). The ORR and DCR of patients who received subsequent chemotherapy was 65.7% and 88.6%, respectively. 15 patients (57.7%, 15/26) were reported to be platinum resistant with a platinum-free interval (PFI) of < 6 months in patients whose platinum sensitivity of the second line platinum-based regimens was evaluable. Patients who received SCS after PARPi resistant associated with a borderline better PFS2 (median PFS2: 41.9 vs. 29.2 months, P = 0.051) and a non-significantly increased PFS2-PFS1 (median PFS2-PFS1: 12.2 vs. 9.8 months, P = 0.551). Patients with a PFI ≥ 12 months had a significantly better PFS2 (median PFS2: 37.0 vs. 25.3 months, P < 0.001) and a tendency towards a better PFS2-PFS1 than those with a PFI < 12 months (median PFS2-PFS1: 11.2 vs. 8.5 months, P = 0.334). A better PFS2 was observed in patients who received second PARPi maintenance therapy (median PFS2 of 35.4 vs. 28.8 months); however, the difference was not statistically significant (P = 0.200). A better PFS2-PFS1 was observed in patients who received second PARPi maintenance therapy (median PFS2-PFS1: 13.6 vs. 8.9 months, P = 0.002) than those without. CONCLUSIONS: In summary, some degree of resistance to standard subsequent platinum and non-platinum chemotherapy is noted in the entire cohort. A trend towards higher benefit from subsequent chemotherapy after first-line PARP inhibitors progression was observed in the PFI ≥ 12 months subgroup than those with PFI < 12 months. PARPi retreatment as maintenance therapy and SCS can be offered to some patients with PARPi resistance.


Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Retrospective Studies , Ovarian Neoplasms/pathology , Progression-Free Survival , Survival Analysis , Platinum/pharmacology , Platinum/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Neoplasm Recurrence, Local/drug therapy
14.
Oncol Res ; 32(5): 831-847, 2024.
Article En | MEDLINE | ID: mdl-38686048

Ovarian cancer is among the most lethal gynecological cancers, primarily due to the lack of specific symptoms leading to an advanced-stage diagnosis and resistance to chemotherapy. Drug resistance (DR) poses the most significant challenge in treating patients with existing drugs. The Food and Drug Administration (FDA) has recently approved three new therapeutic drugs, including two poly (ADP-ribose) polymerase (PARP) inhibitors (olaparib and niraparib) and one vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) for maintenance therapy. However, resistance to these new drugs has emerged. Therefore, understanding the mechanisms of DR and exploring new approaches to overcome them is crucial for effective management. In this review, we summarize the major molecular mechanisms of DR and discuss novel strategies to combat DR.


Drug Resistance, Neoplasm , Ovarian Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Humans , Female , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology
15.
Cancer Treat Rev ; 126: 102726, 2024 May.
Article En | MEDLINE | ID: mdl-38613872

INTRODUCTION: Metastatic castration-resistant prostate cancer (mCRPC) remains incurable and develops from biochemically recurrent PC treated with androgen deprivation therapy (ADT) following definitive therapy for localized PC, or from metastatic castration-sensitive PC (mCSPC). In the mCSPC setting, treatment intensification of ADT plus androgen receptor (AR)-signaling inhibitors (ARSIs), with or without chemotherapy, improves outcomes vs ADT alone. Despite multiple phase 3 trials demonstrating a survival benefit of treatment intensification in PC, there remains high use of ADT monotherapy in real-world clinical practice. Prior studies indicate that co-inhibition of AR and poly(ADP-ribose) polymerase (PARP) may result in enhanced benefit in treating tumors regardless of alterations in DNA damage response genes involved either directly or indirectly in homologous recombination repair (HRR). Three recent phase 3 studies evaluated the combination of a PARP inhibitor (PARPi) with an ARSI as first-line treatment for mCRPC: TALAPRO-2, talazoparib plus enzalutamide; PROpel, olaparib plus abiraterone acetate and prednisone (AAP); and MAGNITUDE, niraparib plus AAP. Results from these studies have led to the recent approval in the United States of talazoparib plus enzalutamide for the treatment of mCRPC with any HRR alteration, and of both olaparib and niraparib indicated in combination with AAP for the treatment of mCRPC with BRCA alterations. SUMMARY: Here, we review the newly approved PARPi plus ARSI treatments within the context of the mCRPC treatment landscape, provide an overview of practical considerations for the combinations in clinical practice, highlight the importance of HRR testing, and discuss the benefits of treatment intensification for patients with mCRPC.


Androgen Receptor Antagonists , Antineoplastic Combined Chemotherapy Protocols , Nitriles , Piperazines , Poly(ADP-ribose) Polymerase Inhibitors , Prostatic Neoplasms, Castration-Resistant , Humans , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Male , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Androgen Receptor Antagonists/therapeutic use , Nitriles/therapeutic use , Piperazines/therapeutic use , Piperazines/administration & dosage , Phthalazines/therapeutic use , Phenylthiohydantoin/therapeutic use , Phenylthiohydantoin/analogs & derivatives , United States , Receptors, Androgen/genetics , Benzamides/therapeutic use , Piperidines/therapeutic use , Indazoles/therapeutic use , Signal Transduction/drug effects , Recombinational DNA Repair/drug effects
16.
Sci Rep ; 14(1): 7519, 2024 04 08.
Article En | MEDLINE | ID: mdl-38589490

Homologous recombination (HR) repairs DNA damage including DNA double-stranded breaks and alterations in HR-related genes results in HR deficiency. Germline alteration of HR-related genes, such as BRCA1 and BRCA2, causes hereditary breast and ovarian cancer (HBOC). Cancer cells with HR deficiency are sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors and DNA-damaging agents. Thus, accurately evaluating HR activity is useful for diagnosing HBOC and predicting the therapeutic effects of anti-cancer agents. Previously, we developed an assay for site-specific HR activity (ASHRA) that can quantitatively evaluate HR activity and detect moderate HR deficiency. HR activity in cells measured by ASHRA correlates with sensitivity to the PARP inhibitor, olaparib. In this study, we applied ASHRA to lymphoblastoid cells and xenograft tumor tissues, which simulate peripheral blood lymphocytes and tumor tissues, respectively, as clinically available samples. We showed that ASHRA could be used to detect HR deficiency in lymphoblastoid cells derived from a BRCA1 pathogenic variant carrier. Furthermore, ASHRA could quantitatively measure the HR activity in xenograft tumor tissues with HR activity that was gradually suppressed by inducible BRCA1 knockdown. The HR activity of xenograft tumor tissues quantitatively correlated with the effect of olaparib. Our data suggest that ASHRA could be a useful assay for diagnosing HBOC and predicting the efficacy of PARP inhibitors.


Antineoplastic Agents , Breast Neoplasms , Ovarian Neoplasms , Piperazines , Humans , Female , Homologous Recombination , BRCA1 Protein/genetics , Phthalazines/pharmacology , Phthalazines/therapeutic use , Antineoplastic Agents/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Poly(ADP-ribose) Polymerases/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , DNA/therapeutic use
17.
JCO Precis Oncol ; 8: e2300567, 2024 Apr.
Article En | MEDLINE | ID: mdl-38579192

PURPOSE: There are limited data available on the real-world patterns of molecular testing in men with advanced prostate cancer. We thus sought to evaluate next-generation sequencing (NGS) testing in the United States, focused on single versus serial NGS testing, the different disease states of testing (hormone-sensitive v castration-resistant, metastatic vs nonmetastatic), tissue versus plasma circulating tumor DNA (ctDNA) assays, and how often actionable data were found on each NGS test. METHODS: The Prostate Cancer Precision Medicine Multi-Institutional Collaborative Effort clinical-genomic database was used for this retrospective analysis, including 1,597 patients across 15 institutions. Actionable NGS data were defined as including somatic alterations in homologous recombination repair genes, mismatch repair deficiency, microsatellite instability (MSI-high), or a high tumor mutational burden ≥10 mut/MB. RESULTS: Serial NGS testing (two or more NGS tests with specimens collected more than 60 days apart) was performed in 9% (n = 144) of patients with a median of 182 days in between test results. For the second NGS test and beyond, 82.1% (225 of 274) of tests were from ctDNA assays and 76.1% (217 of 285) were collected in the metastatic castration-resistant setting. New actionable data were found on 11.1% (16 of 144) of second NGS tests, with 3.5% (5 of 144) of tests detecting a new BRCA2 alteration or MSI-high. A targeted therapy (poly (ADP-ribose) polymerase inhibitor or immunotherapy) was given after an actionable result on the second NGS test in 31.3% (5 of 16) of patients. CONCLUSION: Repeat somatic NGS testing in men with prostate cancer is infrequently performed in practice and can identify new actionable alterations not present with initial testing, suggesting the utility of repeat molecular profiling with tissue or blood of men with metastatic castration-resistant prostate cancer to guide therapy choices.


Antineoplastic Agents , Circulating Tumor DNA , Prostatic Neoplasms , Male , Humans , Retrospective Studies , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/genetics , Prostatic Neoplasms/drug therapy , Circulating Tumor DNA/genetics , Antineoplastic Agents/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , High-Throughput Nucleotide Sequencing/methods
18.
Drug Resist Updat ; 74: 101085, 2024 May.
Article En | MEDLINE | ID: mdl-38636338

Enhanced DNA repair is an important mechanism of inherent and acquired resistance to DNA targeted therapies, including poly ADP ribose polymerase (PARP) inhibition. Spleen associated tyrosine kinase (Syk) is a non-receptor tyrosine kinase acknowledged for its regulatory roles in immune cell function, cell adhesion, and vascular development. This study presents evidence indicating that Syk expression in high-grade serous ovarian cancer and triple-negative breast cancers promotes DNA double-strand break resection, homologous recombination (HR), and subsequent therapeutic resistance. Our investigations reveal that Syk is activated by ATM following DNA damage and is recruited to DNA double-strand breaks by NBS1. Once localized to the break site, Syk phosphorylates CtIP, a pivotal mediator of resection and HR, at Thr-847 to promote repair activity, particularly in Syk-expressing cancer cells. Inhibition of Syk or its genetic deletion impedes CtIP Thr-847 phosphorylation and overcomes the resistant phenotype. Collectively, our findings suggest a model wherein Syk fosters therapeutic resistance by promoting DNA resection and HR through a hitherto uncharacterized ATM-Syk-CtIP pathway. Moreover, Syk emerges as a promising tumor-specific target to sensitize Syk-expressing tumors to PARP inhibitors, radiation and other DNA-targeted therapies.


DNA Breaks, Double-Stranded , Drug Resistance, Neoplasm , Homologous Recombination , Syk Kinase , Syk Kinase/metabolism , Syk Kinase/genetics , Syk Kinase/antagonists & inhibitors , Humans , DNA Breaks, Double-Stranded/drug effects , Female , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Phosphorylation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , DNA Repair/drug effects , Ataxia Telangiectasia Mutated Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Ataxia Telangiectasia Mutated Proteins/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Animals , Cell Line, Tumor , DNA Damage/drug effects
19.
Cancer Invest ; 42(3): 260-273, 2024 Mar.
Article En | MEDLINE | ID: mdl-38588003

In this study, we investigate the veliparib­induced toxicity in cancer patients. Databases were searched for RCTs treated with veliparib. We found veliparib could increase the risk of hematologic and gastrointestinal toxicities. Anemia, neutropenia, thrombocytopenia, and nausea were the most common toxicities. Patients diagnosed with gastrointestinal tumors tend to have a higher risk of high-grade neutropenia; patients in the first-line setting tend to have a higher risk of high-grade anemia and neutropenia than those in the ≥ second line setting. Patients receiving higher dosage of veliparib tend to have a higher risk of all-grade anemia. Veliparib could also increase the risk of insomnia, myalgia, pneumonia, dyspnea, hyponatremia, and fatigue.


Benzimidazoles , Neoplasms , Humans , Benzimidazoles/adverse effects , Benzimidazoles/therapeutic use , Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/adverse effects , Antineoplastic Agents/adverse effects , Anemia/chemically induced
20.
Int Immunopharmacol ; 132: 112006, 2024 May 10.
Article En | MEDLINE | ID: mdl-38581995

This study aimed to investigate the influence of dynamin-related protein 1 (Drp1)-regulated T cells on the antitumor effects of poly (ADP-ribose) polymerase inhibitors (PARPi) combined with programmed cell death protein 1 (PD-1) inhibitors to identify potential targets for enhancing immunotherapy efficacy. We found that T cells with high expression of Drp1 promoted the inhibitory and killing effects of the PARPi and PD-1 inhibitor combination on lung cancer cells in vivo and in vitro. This synergistic mechanism involves Drp1-regulated promotion of activation, migration, and intratumor infiltration of effector T cells; inhibition of negative immunomodulatory cells in the tumor microenvironment; and suppression of PARPi-induced upregulation of PD-L1 expression in tumor cells. These findings suggest that Drp1 could serve as a new target for comprehensively improving the tumor microenvironment, enhancing immunotherapy efficacy, and reversing immunotherapy resistance.


Dynamins , Immune Checkpoint Inhibitors , Lung Neoplasms , Poly(ADP-ribose) Polymerase Inhibitors , Programmed Cell Death 1 Receptor , T-Lymphocytes , Tumor Microenvironment , Animals , Tumor Microenvironment/drug effects , Dynamins/metabolism , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lung Neoplasms/drug therapy , Lung Neoplasms/immunology , Lung Neoplasms/therapy , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Mice , Cell Line, Tumor , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , B7-H1 Antigen/metabolism , B7-H1 Antigen/antagonists & inhibitors , Female , Immunotherapy/methods
...